blackhat USA 2023

AUGUST 9-10, 2023

BRIEFINGS

Bad io_uring: A New Era of Rooting for Android

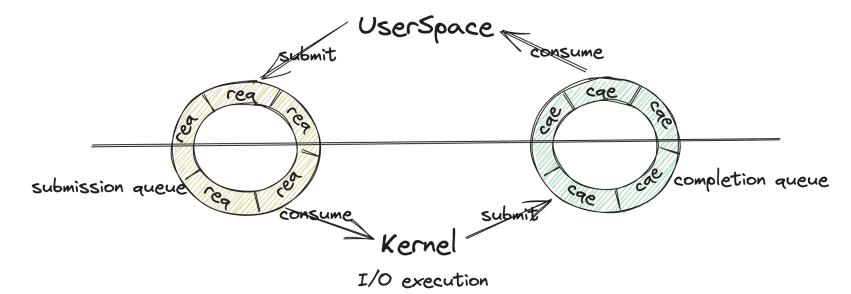
Zhenpeng Lin, Xinyu Xing, Zhaofeng Chen, Kang Li

#badiouring #BHUSA @BlackHatEvents

Who We Are

• Zhenpeng Lin

- Ph.D. from Northwestern University
- Specialized in *kernel security*
- Xinyu Xing
 - Associate Professor at Northwestern University


Zhaofeng Chen

- Principle Researcher at *Certik*
- Kang Li
 - Chief Security Officer at *Certik*

The io_uring

- Efficient I/O operations
- Less Syscalls
- Under ACTIVE development

"Why io_uring so bad?"

#badiouring #BHUSA @BlackHatEvents

The BAD io_uring

• Very buggy

"Why io_uring so bad?"

#badiouring #BHUSA @BlackHatEvents

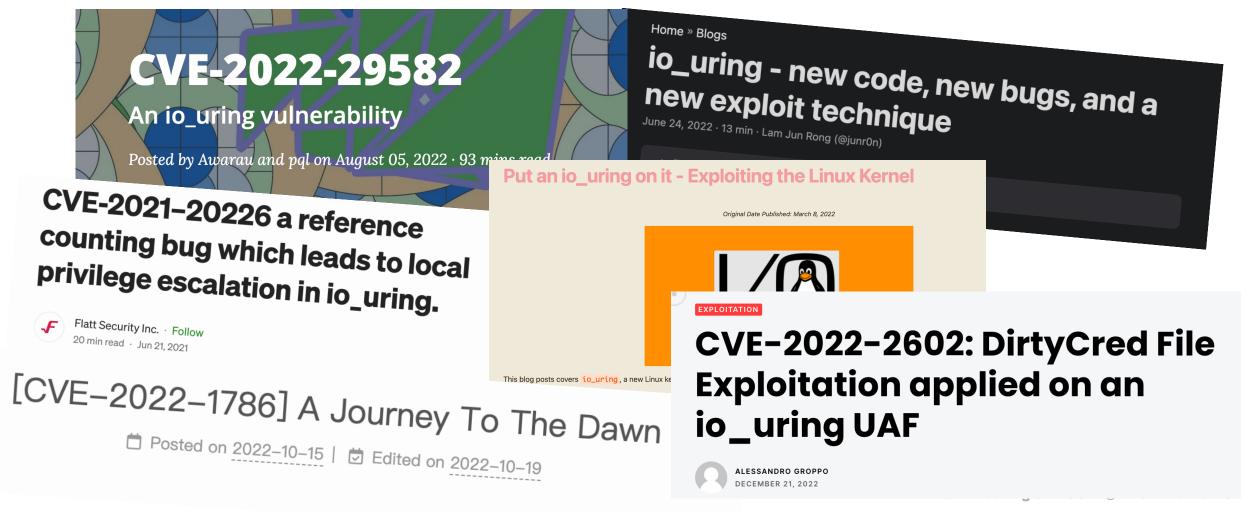
The BAD io_uring

Very buggy

"Why io_uring so bad?"

\leftarrow \rightarrow C \triangle \triangleq syzkaller.appspot.com/upstream	n/fixed		Q 🗘	\$	
syzbot Linux ~	io_uring	17/161	^	×	
I Subsystems I Fixed [4669] ■ Subsystems	🏽 Invalid [10858]	✓ Kernel Health	<mark>≁</mark> Bug	g Lifeti	n

The BAD io_uring


- Very buggy
- Active development, and ACTIVE exploitation

"Why io_uring so bad?"

\leftarrow \rightarrow C \triangle $($ \triangleq syzkaller.appspot.com/upstream	n/fixed		Q	Û	${\leftrightarrow}$
syzbot Linux ~	io_uring	17/161	<u>~</u>	~	×
Image: Weight of the second system Image: Weight of the second system	🏽 Invalid [10858]	✓ Kernel Health	~	Bug	Lifetin

- <u>60% submissions</u> to <u>KCTF VRP</u> exploited io_uring as of June 2023
- Around 1 million USD paid out for those bugs
- All public exploits targeted desktop Linux kernel

- <u>60% submissions</u> to <u>KCTF VRP</u> exploited io_uring as of June 2023
- Around 1 million USD paid out for those bugs
- All public exploits targeted desktop Linux kernel
- Measures taken by Google
 - ChromeOS: io_uring disabled
 - Google servers: io_uring disabled
 - GKE AutoPilot: investigating disabling io_uring by default
 - Android: io_uring *restricted*

- <u>60% submissions</u> to <u>KCTF VRP</u> exploited io_uring as of June 2023
- Around 1 million USD paid out for those bugs
- All public exploits targeted desktop Linux kernel
- Measures taken by Google
 - ChromeOS: io_uring disabled
 - Google servers: io_uring disabled
 - GKE AutoPilot: investigating disabling io_uring by default
 - Android: io_uring *restricted*
 - still accessible from *privileged* context (e.g., adb)

Exploiting io_uring on Android

• A lot of bugs, a lot of potential!

Exploiting io_uring on Android

- A lot of bugs, a lot of potential!
- 🤓 Fun and profit!

Code execution reward amounts		
Description	Maximum Reward	
Pixel Titan M with Persistence, Zero click	Up to \$1,000,000	
Pixel Titan M without Persistence, Zero click	Up to \$500,000	
Local App to Pixel Titan M without Persistence	Up to \$300,000	
Secure Element	Up to \$250,000	
Trusted Execution Environment	Up to \$250,000	
Kernel	Up to \$250,000	
Privileged Process	Up to \$100,000	

Code execution reward amounts

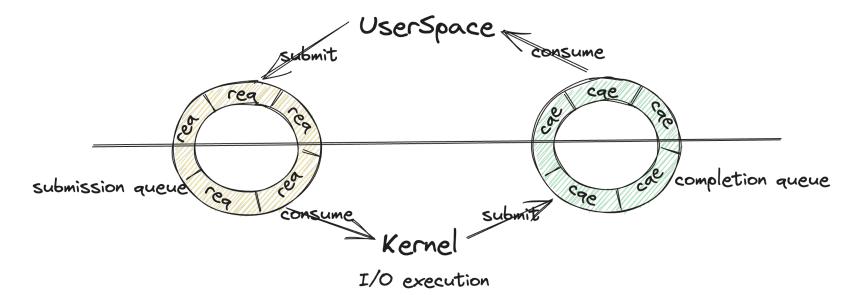
#badiouring #BHUSA @BlackHatEvents

Exploiting io_uring on Android

- A lot of bugs, a lot of potential!
- 🤓 Fun and profit!
- 😕 No public writeup for exploiting it on Android

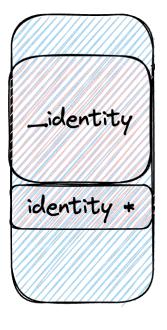
Code execution reward amounts			
Description	Maximum Reward		
Pixel Titan M with Persistence, Zero click	Up to \$1,000,000		
Pixel Titan M without Persistence, Zero click	Up to \$500,000		
Local App to Pixel Titan M without Persistence	Up to \$300,000		
Secure Element	Up to \$250,000		
Trusted Execution Environment	Up to \$250,000		
Kernel	Up to \$250,000		
Privileged Process	Up to \$100,000		

CVE-2022-20409


- No difference than other io_uring bugs
- A stable invalid-free bug
- The bug I used to pwn Google Pixel 6 and Samsung S22 in 2022
- <u>Fixed</u> on 7/29/2022

io_uring's AsynclO

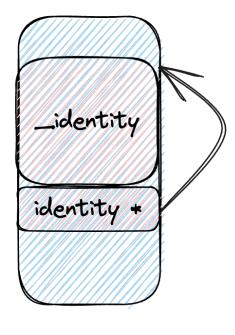
- Each I/O operation is a *req* in the submission queue
- Each req can be processed *asynchronously*
- Each req has its *identity*



Initializing identity

• *identity* stores in *io_uring*

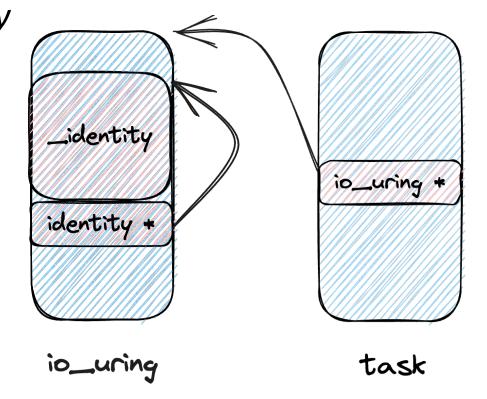
```
int io_uring_alloc_task_context(struct task_struct *task)
{
    struct io_uring_task *tctx;
    tctx = kmalloc(sizeof(*tctx), GFP_KERNEL);
    ...
    io_init_identity(&tctx->__identity);
    tctx->identity = &tctx->__identity;
    task->io_uring = tctx;
}
```

Initializing identity

- *identity* stores in *io_uring*
- *identity* references to the nested ___*identity*

```
int io_uring_alloc_task_context(struct task_struct *task)
{
    struct io_uring_task *tctx;
    tctx = kmalloc(sizeof(*tctx), GFP_KERNEL);
    ...
    io_init_identity(&tctx->__identity);
    tctx->identity = &tctx->__identity;
    task->io_uring = tctx;
}
```



io_uring

Initializing identity

- *identity* stores in *io_uring*
- *identity* references to the nested ___*identity*
- *io_uring* is referenced by *task*

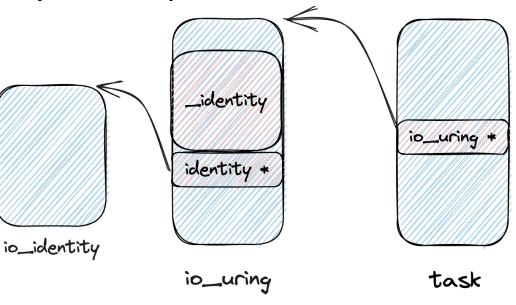
```
int io_uring_alloc_task_context(struct task_struct *task)
{
    struct io_uring_task *tctx;
    tctx = kmalloc(sizeof(*tctx), GFP_KERNEL);
    ...
    io_init_identity(&tctx->__identity);
    tctx->identity = &tctx->__identity;
    task->io_uring = tctx;
}
```




identity COW

• If *identity* changes (e.g., cred changes), new *identity* is created

static bool io_identity_cow(struct io_kiocb *req) { struct io_uring_task *tctx = current->io_uring; struct io_identity *id; id = kmemdup(req->work.identity, sizeof(*id), GFP_KERNEL); io_init_identity(id); ...; req->work.identity = id; tctx->identity = id; }



identity COW

- If *identity* changes (e.g., cred changes), new *identity* is created
- *identity* * will reference to the new *identity* on heap

```
static bool io_identity_cow(struct io_kiocb *req)
{
    struct io_uring_task *tctx = current->io_uring;
    struct io_identity *id;
    ...
    id = kmemdup(req->work.identity, sizeof(*id),
GFP_KERNEL);
    io_init_identity(id);
    ...
    req->work.identity = id;
    tctx->identity = id;
}
```


•••

}

static bool io_identity_cow(struct io_kiocb *req)

struct io_uring_task *tctx = current->io_uring;

•••

/* drop tctx and req identity references, if needed */

if (tctx->identity != &tctx->__identity &&
 refcount_dec_and_test(&tctx->identity->count))
 kfree(tctx->identity);

if (req->work.identity != &tctx->__identity &&
 refcount_dec_and_test(&req->work.identity->count))
 kfree(req->work.identity);

```
req->work.identity = id;
tctx->identity = id;
return true;
```

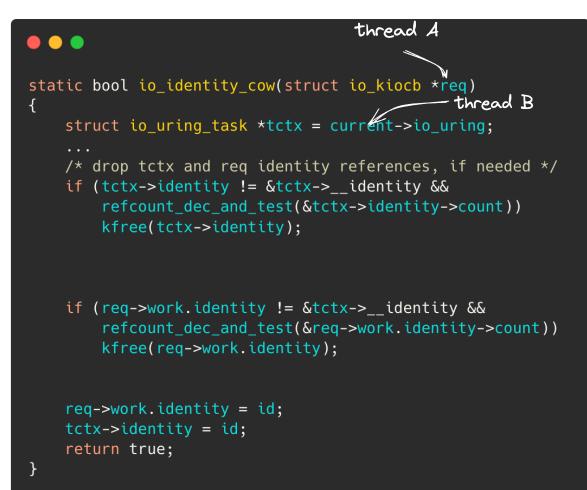

•••

}

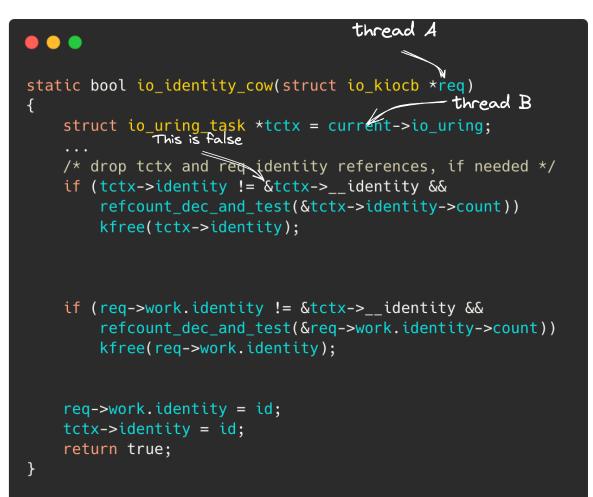
```
static bool io_identity_cow(struct io_kiocb *req)
{
    struct io_uring_task *tctx = current->io_uring;
    ...
    /* drop tctx and req identity references, if needed */
    if (tctx->identity != &tctx->__identity &&
        refcount_dec_and_test(&tctx->identity->count))
        kfree(tctx->identity);
```

```
if (req->work.identity != &tctx->__identity &&
    refcount_dec_and_test(&req->work.identity->count))
    kfree(req->work.identity);
```

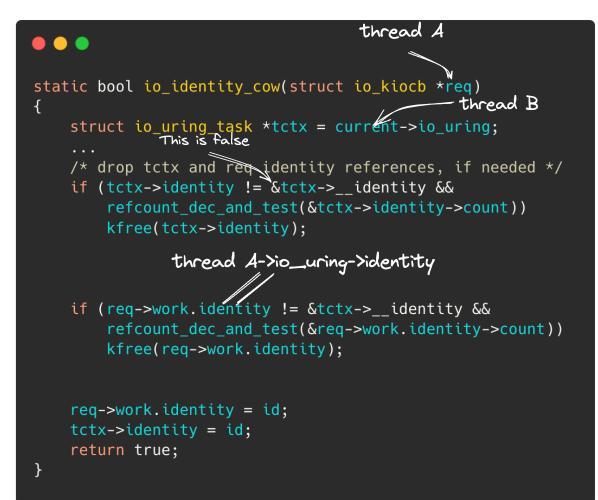
```
req->work.identity = id;
tctx->identity = id;
return true;
```

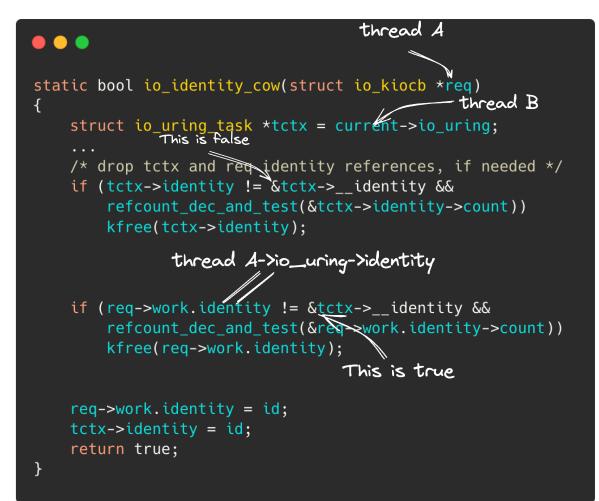


```
static bool io_identity_cow(struct io_kiocb *req)
{
    struct io_uring_task *tctx = current->io_uring;
    ...
    /* drop tctx and req identity references, if needed */
    if (tctx->identity != &tctx->__identity &&
        refcount_dec_and_test(&tctx->identity->count))
        kfree(tctx->identity);

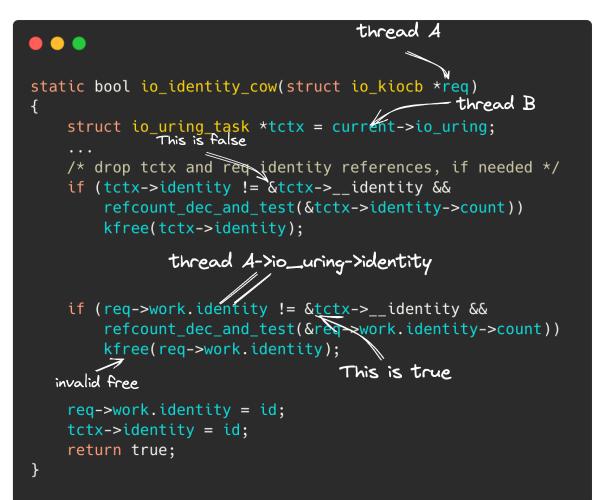
if (req->work.identity != &tctx->__identity &&
```

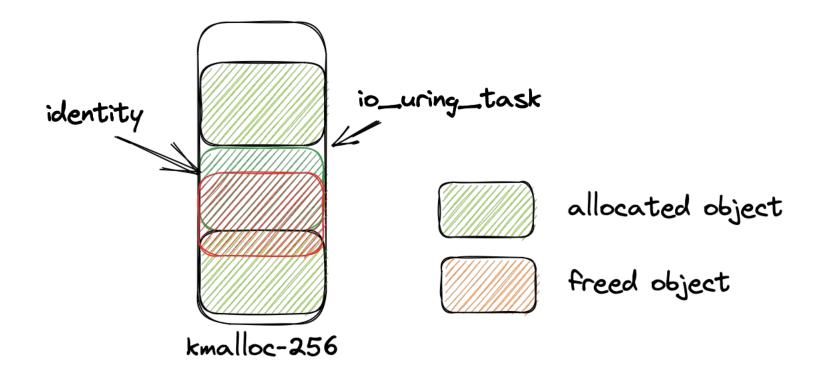

```
it (req->work.identity != &tctx->__identity &&
    refcount_dec_and_test(&req->work.identity->count))
    kfree(req->work.identity);
```

```
req->work.identity = id;
tctx->identity = id;
return true;
```









The Memory Corruption Capability

• Invalid-free a *kmalloc-256* object in the middle

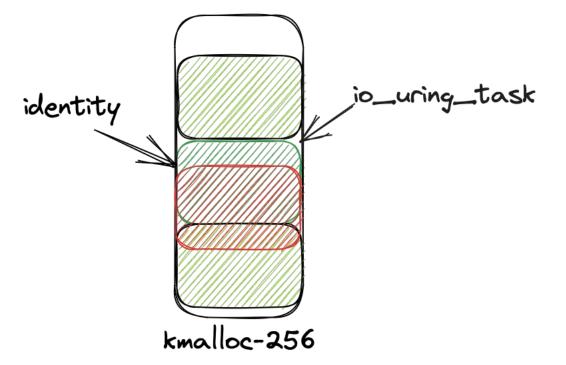
Exploitation on Android

• Restricted Access

- No user_ns
- No FUSE, userfaultfd
- No msg_msg, user_key_payload, etc.
- Very limited choice of syscalls

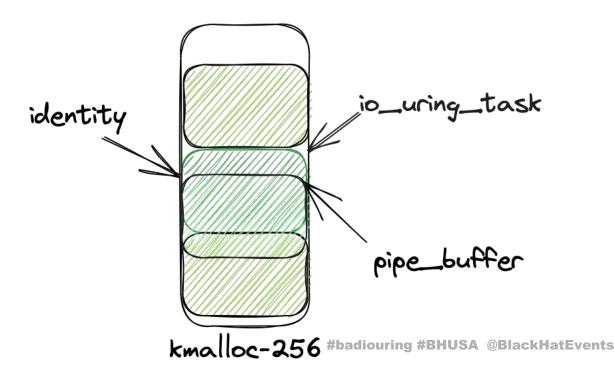
Exploitation on Android

Restricted Access

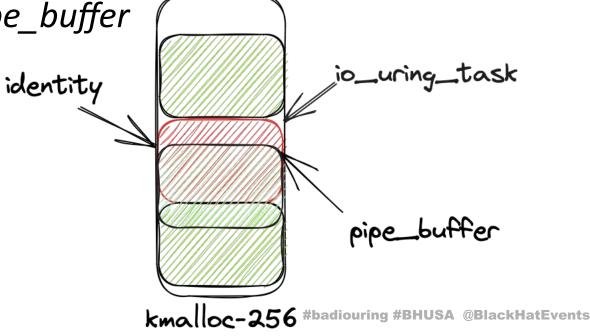

- No user_ns
- No FUSE, userfaultfd
- No msg_msg, user_key_payload, etc.
- Very limited choice of syscalls
- But we have *pipe*⁽²⁾
 - pipe_buffer is an <u>elastic object</u> --- good for spraying
 - *pipe_buffer* contains a global pointer --- good for leaking

•••

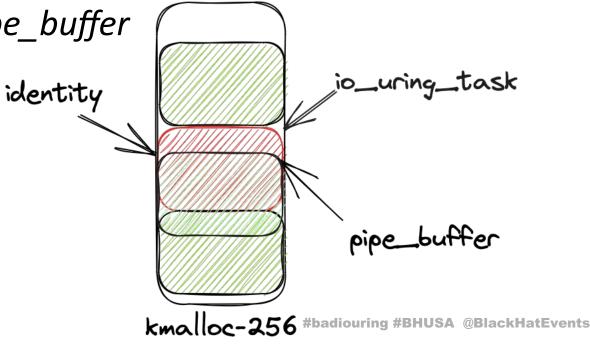
struct pipe_buffer {
 struct page *page;
 unsigned int offset, len;
 const struct pipe_buf_operations *ops;
 unsigned int flags;
 unsigned long private;
}



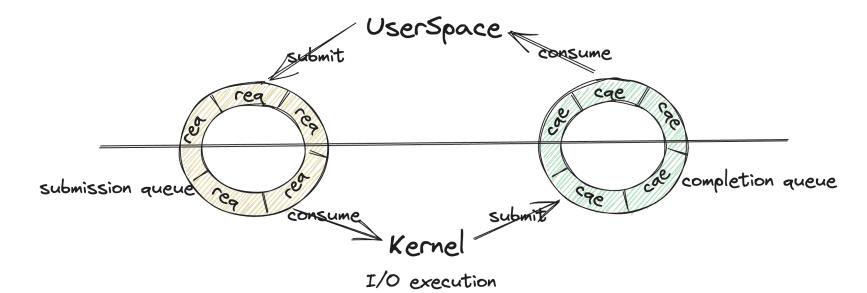
Trigger the invalid-free of *identity*, which frees *io_uring_task* in the middle



- Trigger the invalid-free of *identity*, which frees *io_uring_task* in the middle
- Spray *pipe_buffer* in **kmalloc-256**



- Trigger the invalid-free of *identity*, which frees *io_uring_task* in the middle
- Spray *pipe_buffer* in **kmalloc-256**
- Free *io_uring_task*, which frees *pipe_buffer*


- Trigger the invalid-free of *identity*, which frees *io_uring_task* in the middle
- Spray *pipe_buffer* in kmalloc-256
- Free *io_uring_task*, which frees *pipe_buffer*
- How to leak pipe_buffer out?

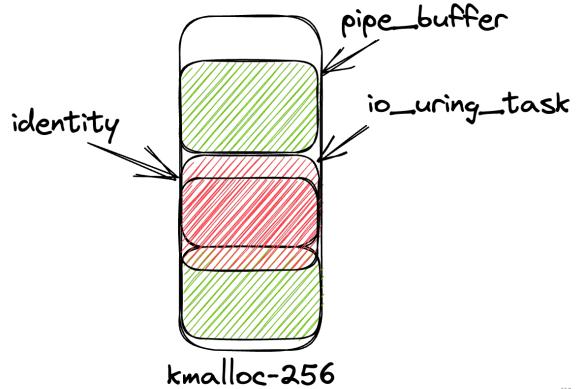
Recap of The io_uring Design

• The *ring buffer* is accessible to both userspace and kernel

#badiouring #BHUSA @BlackHatEvents

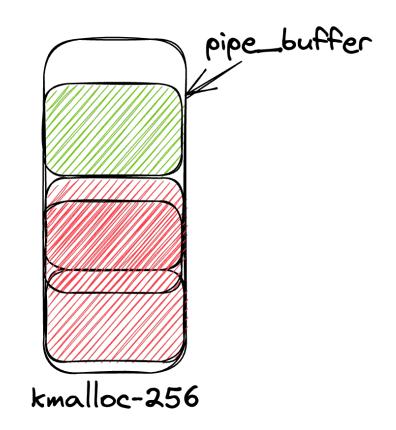
The Shared Ring

- User pages *shared* between kernel and userspace
- The memory is allocated by *buddy allocator* and mapped to userspace
- No copy_to/from_user is needed
- Date can be transported directly without copying
 - Read/write kernel memory from userspace
 - Read/write userspace memory from kernel

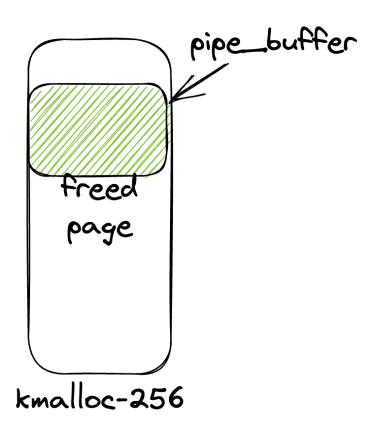


The "DirtyPage" Technique

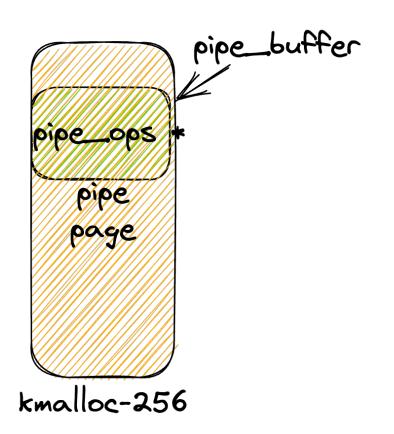
- Some user pages are recycled with slab pages
 - Spraying pages to reclaim freed slab pages
 - Spray objects? No! We spray pages now!
 - Candidates: *io_uring, pipe*
- What is the advantage?
 - Powerful 🤓 : Read/write slab objects from userspace
 - Stable 🤓 : Spray once to have persist read/write on victim object
 - Simple 🤓 : Just allocate more



• Preparing the memory layout



- Preparing the memory layout
- Triggering the invalid-free



- Preparing the memory layout
- Triggering the invalid-free
- Freeing the slab page

- Preparing the memory layout
- Triggering the invalid-free
- Freeing the slab page
- Reclaiming the freed slab page

- Preparing the memory layout
- Triggering the invalid-free
- Freeing the slab page
- Reclaiming the freed slab page
- Reading *pipe_buffer*
 - ops --- bypass kaslr

```
•••
```

```
struct pipe_buffer {
    struct page *page;
    unsigned int offset, len;
    const struct pipe_buf_operations *ops;
    unsigned int flags;
    unsigned long private;
};
```


- Preparing the memory layout
- Triggering the invalid-free
- Freeing the slab page
- Reclaiming the freed slab page
- Reading *pipe_buffer*
 - ops --- bypass kaslr
- Writing *pipe_buffer*
 - flags ---- Dirty Pipe Retro!

•••

```
struct pipe_buffer {
    struct page *page;
    unsigned int offset, len;
    const struct pipe_buf_operations *ops;
    unsigned int flags;
    unsigned long private;
};
```


- Preparing the memory layout
- Triggering the invalid-free
- Freeing the slab page
- Reclaiming the freed slab page
- Reading *pipe_buffer*
 - ops --- bypass kaslr
- Writing *pipe_buffer*
 - flags ---- Dirty Pipe Retro!
 - *page* --- **arbitrary r/w** on kernel memory?

•••

```
struct pipe_buffer {
    struct page *page;
    unsigned int offset, len;
    const struct pipe_buf_operations *ops;
    unsigned int flags;
    unsigned long private;
};
```

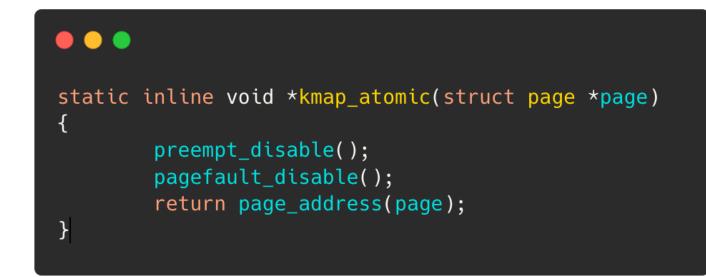

How Pipe Uses Pages

- *kmap_atomic* the page
- copy *in/out* the page

•••

```
static ssize_t
pipe_read(struct kiocb *iocb, struct iov_iter *to) {
```

```
// in copy_page_to_iter_iovec
kaddr = kmap_atomic(page);
from = kaddr + offset;
left = copyout(buf, from, copy);
...
```


```
}
```

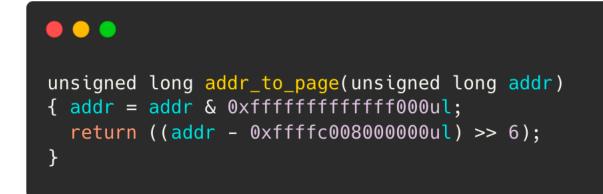
```
static ssize_t
pipe_write(struct kiocb *iocb, struct iov_iter *to)
{ ...
    // in copy_page_from_iter_iovec
    kaddr = kmap_atomic(page);
    to = kaddr + offset;
    left = copyin(to, buf, copy);
    ...
}
```

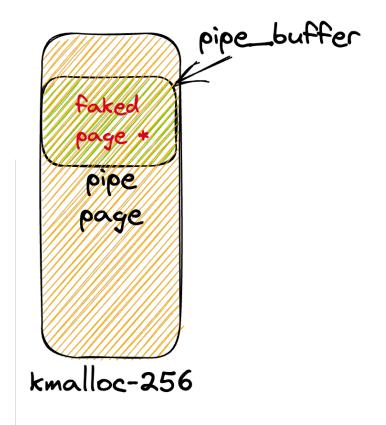

How Pipe Uses Pages

- *kmap_atomic* the page
- copy *in/out* the page
- kmap_atomic is page_address

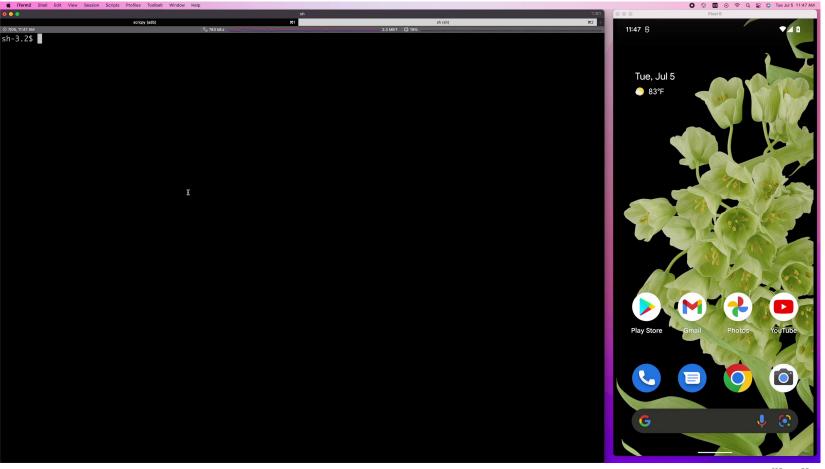
How Pipe Uses Pages

- *kmap_atomic* the page
- copy *in/out* the page
- kmap_atomic is page_address
- page_address
 - equals (page<<SHIFT)+OFFSET
 - SHIFT is fixed
 - **OFFSET** is also **fixed** on ARM64


•••


#define page_address(x) page_to_virt(x)
#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
#define __va(x) ((void *)((unsigned long)(x)+PAGE_OFFSET))
#define PFN_PHYS(x) ((phys_addr_t)(x) << PAGE_SHIFT)</pre>

Achieving Kernel Arbitrary R/W


- Given a kernel address
 - Calculate the its page
 - Calculate the offset
 - Overwrite the *pipe_buffer* with calculated data
- *Read/Write* by reading/writing the pipe

Escalating Privilege On Pixel 6

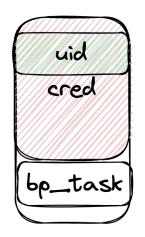
#badiouring #BHUSA @BlackHatEvents

Samsung's KNOX

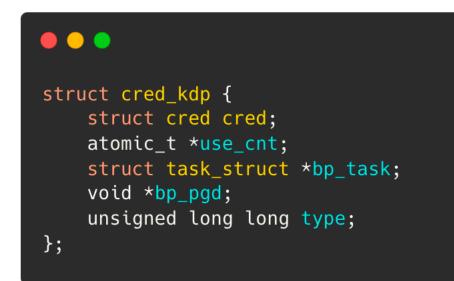
- Samsung has customized protection for their kernel --- KNOX
- KNOX protects cred integrity

- Samsung has customized protection for their kernel --- KNOX
- KNOX protects cred integrity

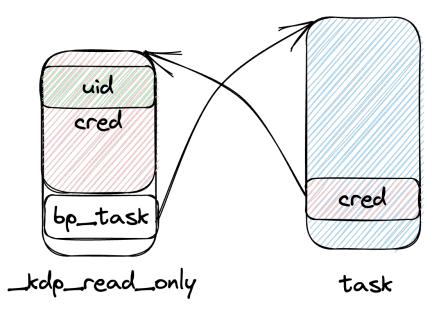
- Samsung has customized protection for their kernel --- KNOX
- KNOX protects cred integrity

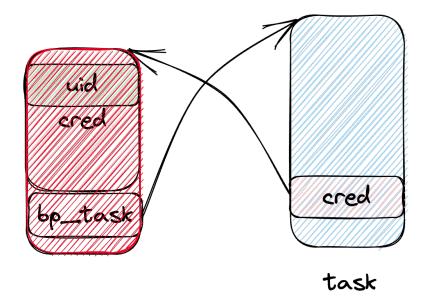


- Samsung has customized protection for their kernel --- KNOX
- KNOX protects cred integrity

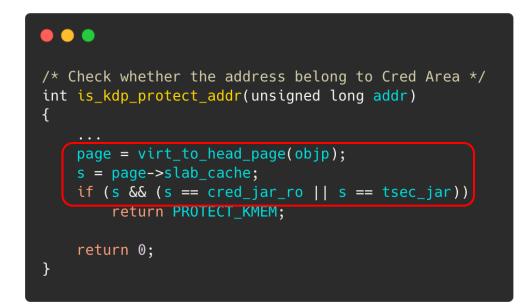


Samsung's KNOX

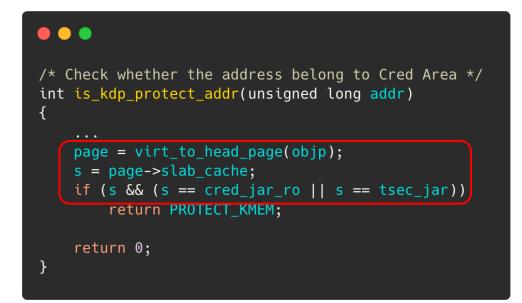

- Samsung has customized protection for their kernel --- KNOX
- KNOX protects cred integrity
- cred object is read-only, uid field is read-only

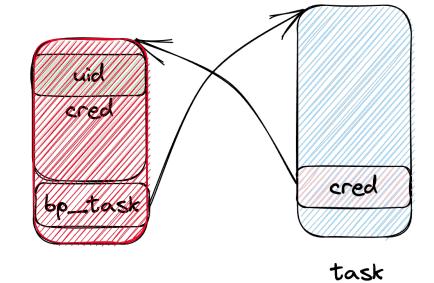


- Cross-checking between *task* and *cred*
- Integrity is validated at syscall entry

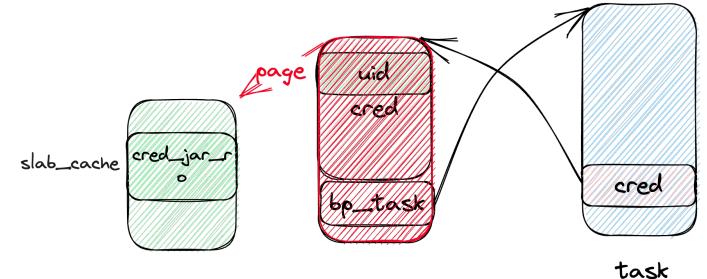


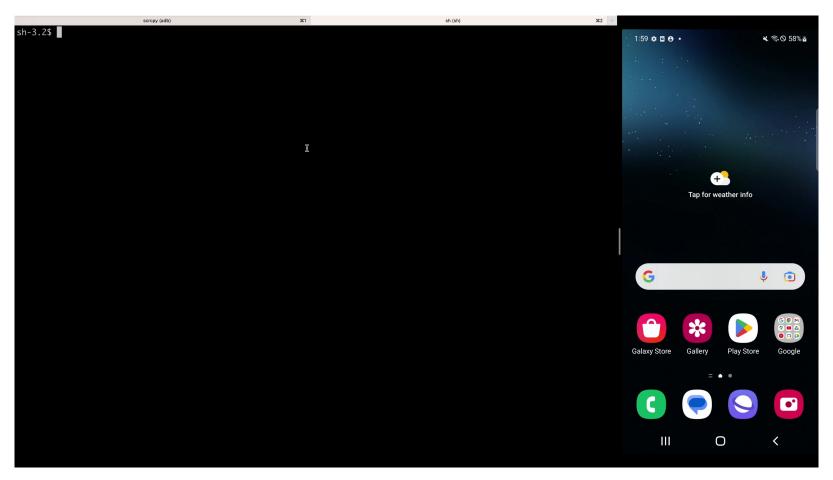
- Cross-checking between *task* and *cred*
- Integrity is validated at syscall entry
- How to prevent the cred is forged?


- How to prevent the cred is forged?
 - Checking if the *cred* is from *cred_jar_ro/tsec_jar* slab



- How to prevent the cred is forged?
 - Checking if the *cred* is from *cred_jar_ro/tsec_jar* slab
 - This check is weak which could by bypassed




Bypassing KNOX

- Forging a *root cred* with correct references
- Tampering the *slab_cache* of the forged cred's page

Escalating Privilege On S22

- io_uring is a huge attack surface not only to desktop but also to AOSP
- *Restricting* io_uring on Android doesn't seem enough
- Object spray is not the only exploit option, try **DirtyPage(**page spray)!
- Android kernel exploitation with *DirtyPage* is simple!

https://github.com/Markakd/bad_io_uring @Markak_ https://zplin.me