
From Thousands of Hours to a Couple of Minutes:
Towards Automating Exploit Generation for

Arbitrary Types of Kernel Vulnerabilities
1

• Wei Wu @wu_xiao_wei
• Visiting scholar at JD.com

• Conducting research on software security in
Enterprise Settings

• Visiting Scholar at Penn State University
• Vulnerability analysis
• Memory forensics
• Malware dissection

• Final year PhD candidate at UCAS
• Knowledge-driven vulnerability analysis

• Co-founder of CTF team Never Stop
Exploiting.(2015)
• ctftime 2017 ranking 4th team in China

• I am on market.

Who are We?

• Reverse engineering
• Symbolic execution
• Static analysis

2

• Visiting scholar at JD.com
• Conducting research on software

and hardware security in
Enterprise Settings

• Assistant Professor at Penn State
University
• Advising PhD students and

conducting many research projects
on
• Vulnerability identification
• Vulnerability analysis
• Exploit development facilitation
• Memory forensics
• Deep learning for software security
• Binary analysis
• …

Who are We? (cont)
Xinyu Xing • Jimmy Su

• Head of JD security research center
• Vulnerability identification and exploitation

in Enterprise Settings
• Red Team
• JD IoT device security assessments
• Risk control
• Data security
• Container security

3

What are We Talking about?

• Discuss the challenge of exploit development
• Introduce an automated approach to facilitate exploit development
• Demonstrate how the new technique facilitate mitigation circumvention

4

Background

• All software contain bugs, and # of bugs grows with the increase of software complexity
• E.g., Syzkaller/Syzbot reports 800+ Linux kernel bugs in 8 months

• Due to the lack of manpower, it is very rare that a software development team could
patch all the bugs timely
• E.g., A Linux kernel bug could be patched in a single day or more than 8 months; on average, it

takes 42 days to fix one kernel bug

• The best strategy for software development team is to prioritize their remediation efforts
for bug fix
• E.g. based on its influence upon usability
• E.g., based on its influence upon software security
• E.g., based on the types of the bugs
• … …

5

Background (cont.)

• Most common strategy is to fix a bug based on its exploitability
• To determine the exploitability of a bug, analysts generally have to write a

working exploit, which needs
1) Significant manual efforts
2) Sufficient security expertise
3) Extensive experience in target software

6

Crafting an Exploit for Kernel Use-After-Free

kernel panic

Dangling ptr
occurrence

Dangling ptr
dereference

syscall_A(…)

syscall_B(…)

Freed
object

Object
carefully
selected

syscall_M(…)

Proper time
window to

perform
heap spray

1. Use control over program counter (rip) to
hijack control flow

2. Use the ability to write arbitrary content to
arbitrary address to escalate privilege

3. …

7

Challenge 1: Needs Intensive Manual Efforts

• Analyze the kernel panic
• Manually track down

1. The site of dangling pointer
occurrence and the corresponding
system call

2. The site of dangling pointer
dereference and the corresponding
system call

kernel panic

Dangling ptr
occurrence

Dangling ptr
dereference

syscall_A(…)

syscall_B(…)

Freed
object

8

Challenge 2: Needs Extensive Expertise in Kernel

• Identify all the candidate objects that
can be sprayed to the region of the
freed object
• Pinpoint the proper system calls that

allow an analyst to perform heap spray
• Figure out the proper arguments and

context for the system call to allocate
the candidate objects

Freed
object

Object
carefully
selected

syscall_M(…)

9

Challenge 3: Needs Security Expertise

• Find proper approaches to accomplish
arbitrary code execution or privilege
escalation or memory leakage
• E.g., chaining ROP
• E.g., crafting shellcode
• …

kernel panic

1. Use control over program
counter (rip) to perform
arbitrary code execution

2. Use the ability to write
arbitrary content to arbitrary
address to escalate
privilege

3. …

10

Some Past Research Potentially Tackling the Challenges

• Approaches for Challenge 1
• Nothing I am aware of, but simply extending KASAN could potentially solve this problem

• Approaches for Challenge 2
• [Blackhat07] [Blackhat15] [USENIX-SEC18]

• Approaches for Challenge 3
• [NDSS’11] [S&P16], [S&P17]

[NDSS11] Avgerinos et al., AEG: Automatic Exploit Generation.
[Blackhat 15] Xu et al., Ah! Universal android rooting is back.
[S&P16] Shoshitaishvili et al., Sok:(state of) the art of war: Offensive techniques in binary analysis.
[USENIX-SEC18] Heelan et al., Automatic Heap Layout Manipulation for Exploitation.
[S&P17] Bao et al., Your Exploit is Mine: Automatic Shellcode Transplant for Remote Exploits.
[Blackhat07] Sotirov, Heap Feng Shui in JavaScript

11

12

Roadmap

• Unsolved challenges in exploitation facilitation
• Our techniques -- FUZE
• Demonstration with real-world Linux kernel vulnerabilities
• Conclusion

13

A Real-World Example (CVE-2017-15649)

next
prev

next
prev

Head node

next
prev

setsockopt(…)
insert a node

14

A Real-World Example (CVE 2017-15649)

dangling ptr

next
prev

next
prev

next
prev

close(…) free node but not
completely removed from the list

Head node

15

Challenge 4: No Primitive Needed for
Exploitation

next
prev

next
prev

next

Node newly
crafted

dangling ptr

Head node

next
prev

Obtain an ability to write
unmanageable data to

unmanageable address

prevprev

16

No Useful Primitive == Unexploitable??

sendmsg(…)

kernel panic

Dangling ptr
occurrence

Dangling ptr
dereference

Obtain the primitive – write
unmanageable data to
unmanageable region

Obtain the primitive – hijack
control flow (control over rip)

17

Roadmap

• Unsolved challenges in exploitation facilitation
• Our techniques -- FUZE
• Evaluation with real-world Linux kernel vulnerabilities
• Conclusion

18

• Identifying the site of dangling
pointer occurrence, and that of its
dereference; pinpointing the
corresponding system calls

FUZE – Extracting Critical Info.
User space

Kernel space

syscall_B

syscall_A

Freed
object

19

CR4

• Identifying the site of dangling
pointer occurrence, and that of its
dereference; pinpointing the
corresponding system calls
• Performing kernel fuzzing between

the two sites and exploring other
panic contexts (i.e., different sites
where the vulnerable object is
dereferenced)

FUZE – Performing Kernel Fuzzing

User space
Kernel space

syscall_B

syscall_A

syscall_Csyscall_Dsyscall_Esyscall_M

20

?

• Identifying the site of dangling
pointer occurrence, and that of its
dereference; pinpointing the
corresponding system calls
• Performing kernel fuzzing between

the two sites and exploring other
panic contexts (i.e., different sites
where the vulnerable object is
dereferenced)
• Symbolically execute at the sites of

the dangling pointer dereference

FUZE – Performing Symbolic Execution

?

?
?

?

?

User space
Kernel space

syscall_B

syscall_Csyscall_Dsyscall_Esyscall_M

?
Freed
object

Set symbolic value
for each byte 21

Crafting Working Exploits Step by Step

Identifying Critical Info.

Performing Kernel Fuzzing

Symbolic Execution

22

Critical Information Extraction

• Goal: identifying following critical information
• Vulnerable object
• Free site
• Dereference site
• Syscalls in PoC tied to corresponding free and

dereference
• Time window between free and dereference

• Methodology:
• Instrument the PoC with ftrace and generate

ftrace log
• instrument kernel with KASAN
• Combining both ftrace and KASAN log for analysis

syscall_B

syscall_A

Freed
object time

window

23

Critical Information Extraction (cont)

• Goal: identifying following critical information
• Vulnerable object
• Free site
• Dereference site
• Syscalls in PoC tied to corresponding free and

dereference
• Time window between free and dereference

• Methodology:
• Instrument the PoC with ftrace[1] and generate

ftrace log
• instrument kernel with KASAN[2]
• Combining both ftrace and KASAN log for analysis

[2] kasan. https://github.com/google/kasan/wiki
[1] ftrace. https://www.kernel.org/doc/Documentation/trace/ftrace.txt

void *task1(void *unused) {
...

int err = setsockopt(...);

}
void *task2(void *unused) {

int err = bind(...);

}
…
void loop_race(){

...
}
int main(){

loop_race();
}

write_ftrace_marker(1);

write_ftrace_marker(1);

write_ftrace_marker(2);

write_ftrace_marker(2);

ftrace_kmem_trace_enable();

Unique ID for each
syscall in PoC

24

Critical Information Extraction (cont)
BUG: KASAN: use-after-free
in dev_add_pack+0x304/0x310
Write of size 8 at addr
ffff88003280ee70
by task poc/2678
Call Trace:

...
Allocated by task 7271:

...(allocation trace)
Freed by task 2678:

...(free trace)
The buggy address belongs
to the object at
ffff88003280e600
which belongs to the cache
kmalloc-4096 of size 4096

...
poc-7271 : tracing_mark_write: executing syscall: setsockopt
poc-7272 : tracing_mark_write: executing syscall: bind
poc-7271 : kmalloc: call_site=... ptr=ffff88003280e600
bytes_req=2176 bytes_alloc=4352 gfp_flags=GFP_KERNEL
...
poc-7271 : tracing_mark_write: finished syscall: setsockopt
...
poc-7272 : tracing_mark_write: finished syscall: bind
...
poc-2678 : tracing_mark_write: executing syscall: close
poc-2678 : kfree: call_site=... ptr=ffff88003280e600
...
poc-2678 : tracing_mark_write: finished syscall: close
poc-2678 : tracing_mark_write: executing syscall: socket
...
end of ftrace

pid:2678

pid:7271

pid:7272

KASAN warning

setsockopt

socket

bind

close

free site

allocation site

dangling pointer
dereference site

25

Critical Information Extraction (cont)

pid:2678

pid:7271

pid:7272

setsockopt

socket

bind

KASAN warning
close

free site

allocation site

dangling pointer
dereference site

void loop_race() {
...
while(1) {
fd = socket(AF_PACKET, SOCK_RAW,

htons(ETH_P_ALL));
...
pthread_create (&thread1, NULL, task1, NULL);
pthread_create (&thread2, NULL, task2, NULL);
pthread_join(thread1, NULL);
pthread_join(thread2, NULL);
close(fd);

}
}

void *task1(void *unused) {
...
int err = setsockopt(fd,

0x107, 18, ..., ...);
}
void *task2(void *unused) {

int err = bind(fd, &addr,
...);
}

26

Crafting Working Exploits Step by Step

Identifying Critical Info.

Performing Kernel Fuzzing

Symbolic Execution

27

Kernel Fuzzing

close()

socket()

poc_wrapper(){
/* PoC wrapping function */

...
socket();//dereference site
while(true){ // Race condition

...
threadA(...);
threadB(...);
...
close(); //free site
/* instrumented statements */
if (!ioctl(...)) // interact with

a kernel module
return;

}
}
poc_wrapper();
fuzzing();

syscall_?

28

Kernel Module for Dangling Pointer Identification

• Identifying dangling pointer through the
global variable pertaining to vulnerable
object
• Setting breakpoint at syscall tied to the dangling

pointer dereference
• Executing PoC program and triggering the

vulnerability
• Debugging the kernel step by step and recording

dataflow (all registers)
• Tracking down global variable (or current

task_struct) through backward dataflow analysis
• Recording the base address the global variable

(or current task_struct) and the offset
corresponding to the freed object

mov rdx, ds: global_list_head
...
mov rax, qword ptr[rdx+8]
mov rdi, qword ptr[rax+16] : dangl. deref.

0 8 16

global_list_head

freed object

29

dangling
pointer

rax:...
rbx:...
rcx:...
rdx:...

...

Kernel Module for Dangling Pointer Identification (cont)

• Identifying dangling pointer through the
global variable pertaining to vulnerable
object
• Setting breakpoint at syscall tied to the dangling

pointer dereference
• Executing PoC program and triggering the

vulnerability
• Debugging the kernel step by step and recording

dataflow (all registers)
• Tracking down global variable (or current

task_struct) through backward dataflow analysis
• Recording the base address the global variable

(or current task_struct) and the offset
corresponding to the freed object

rax:...
rbx:...
rcx:...
rdx:...

...

close()

socket()
rax:...
rbx:...
rcx:...
rdx:...

...

rax:...
rbx:...
rcx:...
rdx:...

...

mov rdx, ds: global_list_head
...
mov rax, qword ptr[rdx+8]
mov rdi, qword ptr[rax+16] : dangl. deref.

bp.

30

Kernel Fuzzing(cont)

• Reusing syzkaller[1] to performing kernel fuzzing
after a dangling pointer is identified
• generate syz-executor which invoke poc_wrapper first

• enable syscalls that potentially dereference the
vulnerable object

• "enable_syscalls”

• transfer variables that appears in the PoC into the
interface

• e.g. file descriptors

31

poc_wrapper();
fuzzing();

[1] syzkaller – kernel fuzzer. https://github.com/google/syzkaller

Crafting Working Exploits Step by Step

Identifying Critical Info.

Performing Kernel Fuzzing

Symbolic Execution

32

• Symbolic execution for kernel is challenging.
• How to model and emulate interrupts?
• How to handling multi-threading?
• How to emulate hardware device?

• Our goal: use symbolic execution for
identifying exploitable primitives
• We can opt-in angr[1] for kernel symbolic

execution from a concrete state
• single thread
• no interrupt
• no context switching

Symbolic Execution

[1] angr. http://angr.io/

close()

sendto()

33

• Symbolic Execution initialization
• Setting conditional breakpoint at the dangling

pointer dereference site
• Running the PoC program to reach the dangling

pointer dereference site
• Migrating the memory/register state to a blank

state
• Setting freed object memory region as symbolic
• Starting symbolic execution!

• Challenges:
• How to handle state(path) explosion
• How to determine exploitable primitive
• How to handle symbolic read/write

Symbolic Execution
close()

sendto()Freed object
sym_var sym_var
sym_var sym_var
sym_var sym_var

blank state QEMU
console

Guest VM
concrete
memory
pages

registers

for i in range(uaf_object_size):
sym_var = state.se.BVS("uaf_byte"+str(i), 8)
state.memory.store(uaf_object_base+i,sym_var)

34

• Our design already mitigates state
explosion by starting from the first
dereference site
• no syscall issues
• no user input issues

• However, if a byte from the freed object is
used in a branch condition, path explosion
occurs.
• Workarounds:

• limiting the time of entering a loop.
• limiting the total length of a path.
• copying concrete memory page on demand
• writing kernel function summary.

• e.g. mutex_lock

mov edx, dword ptr[freed obj]
loop:

...
inc ecx
cmp ecx, edx
jne loop (0xffffffff81abcdef)
...

State(Path) Explosion

active states: loop
active states: loop,
loop, loop, loop, ...active states: loop,

loop, loop, loop,
loop, loop, ...

for state in simgr.active:
if detect_loop(state, 5):

simgr.remove(state)

for state in simgr.active:
if len(state.history) > 200:

simgr.remove(state)

Memory consumption ≈ number_of_states * size_of_each_state

35

• Unconstrained state
• state with symbolic Instruction pointer
• symbolic callback

• double free
• e.g. mov rdi, uaf_obj; call kfree

• memory leak
• invocation of copy_to_user with src

point to a freed object
• syscall return value

Useful primitive identification

if (ptype->id_match)
return ptype->id_match(ptype, skb->sk)

Code fragment related to an exploit primitive of CVE-2017-15649

Code fragment related to an exploit primitive of CVE-2017-17053

...
kfree(ldt); // ldt is already freed

case 127...191:
return ccid_hc_rx_getsockopt(dp-

>dccps_hc_rx_ccid, sk, optname, len, (u32
__user *)optval, optlen)

Code fragment related to an exploit primitive of CVE-2017-8824

36

• write-what-where
• mov qword	ptr [rdi],	rsi

Useful primitive identification(cont)

rdi (destination) rsi (source) primitive
symbolic symbolic arbitrary write (qword shoot)
symbolic concrete write fixed value to arbitrary address
free chunk any write to freed object
x(concrete) x(concrete) self-reference structure
metadata of freed
chunk

any meta-data corruption

...
37

From Primitive to Exploitation

• Exploit technique database
• Control flow hijack attacks:

• pivot-to-user
• turn-off-smap and ret-to-user
• set_rw() page permission modification
• …

• Double free attacks
• auxiliary victim object
• loops in free pointer linked list

• memory leak attacks
• leak sensitive information (e.g. credentials)

• write-what-where attacks
• heap metadata corruption
• function-pointer-hijack
• vdso-hijack
• credential modification
• …

• When you found a cute exploitation technique, why not make it reusable?
• Each technique can be implemented as state plugins to angr.

38

From Primitive to Exploitation: SMEP bypass

• Solution: ROP
• stack pivot to userspace [1]

stack pivot gadget
xchg eax, esp

control flow hijack
primitive

mov rax, qword ptr[evil_ptr]
call rax

If simgr.unconstrained:
for ucstate in simgr.unconstrained:

try_pivot_and_rop_chain(ucstate)

[1] Linux Kernel ROP – Ropping your way to # (Part 2)
https://www.trustwave.com/Resources/SpiderLabs-Blog/Linux-Kernel-ROP---Ropping-your-way-to---(Part-2) 39

; ret

From Primitive to Exploitation: SMAP bypass

• Solution: using two control flow
hijack primitives to clear SMAP bit
(21th) in CR4 and land in shellcode
• 1st --- > mov cr4, rdi ; ret
• 2nd --- > shellcode

• limitation
• can not bypass hypervisor that

protects control registers
• Universal Solution: kernel space

ROP
• bypass all mainstream mitigations.

40

Hypervisor

VM VM VM

CR4 CR4 CR4

Extra Symbolization

• Goal: enhance the ability to find useful
primitives

• Observation: we can use a ROP/JOP
gadget to control an extra register and
explore more state space

• Approach:
• forking states with additional symbolic

register upon symbolic states
• We may explore more states by adding

extra symbolic registers

1st control flow
hijack primitive

path unknown

mov rax, ptr[rsi]
call rax

: basic block
regular path

2nd primitive

test rcx, rcx
je …

set rcx as symbolic

win!

41
Figure: Identifying two control flow hijack primitive for CVE-
2017-15649

From Primitive to Exploitation: post-exploit fix

• Sometimes we get control flow hijack primitive in interrupt context.
• avoiding double fault: keep writing to your ROP payload page to keep it mapped in

• Some syscall (e.g. execve) checks current execution context (e.g. via reading
preempt_count) and decides to panic upon unmatched context.

• Solution: fixing preempt_count before invoking execve(“/bin/sh”, NULL, NULL)

BUG_ON(in_interrupt()); ------------[cut	here]------------
kernel	BUG	at	linux/mm/vmalloc.c:1394!

42

Symbolic Read/Write

t0
mov rdi, QWORD PTR [corrupted_buffer]

t1
mov rax, QWORD PTR [rdi]

t2

43

heap
chunk corrupted buffer heap

chunk

heap
chunk corrupted buffer heap

chunk
heap

chunk corrupted buffer heap
chunk

t0

t2t1

rdi: symbolic_qword rdi: ??? rax: ???

Symbolic read/write concretization strategy

• Concretize the symbolic address to pointing a
region under our control
• no SMAP: entire userspace
• with SMAP but no KASLR: physmap region
• with SMAP and KASLR: … need a leak first

mov rdi, QWORD PTR [corrupted_buffer]
mov rax, QWORD PTR [rdi]

44

heap
chunk corrupted buffer heap

chunk

pointer

rdi

rax: symbolic qword
Physmap

region

heap
chunk corrupted buffer heap

chunk

pointer

rdi

rax: symbolic qword
Userspace

Roadmap

• Unsolved challenges in exploitation facilitation
• Our techniques -- FUZE
• Demonstration with real-world Linux kernel vulnerabilities
• Conclusion

45

• 15 real-world UAF kernel
vulnerabilities
• Only 5 vulnerabilities have

demonstrated their exploitability
against SMEP
• Only 2 vulnerabilities have

demonstrated their exploitability
against SMAP

Case Study
CVE-ID

of public exploits # of generated exploits
SMEP SMAP SMEP SMAP

2017-17053 0 0 1 0
2017-15649* 0 0 3 2
2017-15265 0 0 0 0

2017-10661* 0 0 2 0
2017-8890 1 0 1 0

2017-8824* 0 0 2 2
2017-7374 0 0 0 0

2016-10150 0 0 1 0
2016-8655 1 1 1 1
2016-7117 0 0 0 0

2016-4557* 1 1 4 0
2016-0728* 1 0 3 0
2015-3636 0 0 0 0

2014-2851* 1 0 1 0
2013-7446 0 0 0 0

overall 5 2 19 546
*: discovered new dereference by fuzzing

• FUZE helps track down useful
primitives, giving us the power to
• Demonstrate exploitability against

SMEP for 10 vulnerabilities
• Demonstrate exploitability against

SMAP for 2 more vulnerabilities
• Diversify the approaches to perform

kernel exploitation
• 5 vs 19 (SMEP)
• 2 vs 5 (SMAP)

Case Study (cont)
CVE-ID

of public exploits # of generated exploits
SMEP SMAP SMEP SMAP

2017-17053 0 0 1 0
2017-15649 0 0 3 2
2017-15265 0 0 0 0
2017-10661 0 0 2 0
2017-8890 1 0 1 0
2017-8824 0 0 2 2
2017-7374 0 0 0 0

2016-10150 0 0 1 0
2016-8655 1 1 1 1
2016-7117 0 0 0 0
2016-4557 1 1 4 0
2016-0728 1 0 3 0
2015-3636 0 0 0 0
2014-2851 1 0 1 0
2013-7446 0 0 0 0

overall 5 2 19 547

Discussion on Failure Cases

• Dangling pointer occurrence and its dereference tie to the same system call
• FUZE works for 64-bit OS but some vulnerabilities demonstrate its exploitability

only for 32-bit OS
• E.g., CVE-2015-3636

• Perhaps unexploitable!?
• CVE-2017-7374 ß null pointer dereference
• E.g., CVE-2013-7446, CVE-2017-15265 and CVE-2016-7117

48

What about heap overflow

• Heap overflow is similar to use-after-free:
• a victim object can be controlled by attacker by:

• heap spray (use-after-free)
• overflow (or memory overlap incurred by corrupted heap

metadata)
• Heap overflow exploitation in three steps:

1) Understanding the heap overflow
off-by-one? arbitrary length? content controllable?

2) Find a suitable victim object and place it after the
vulnerable buffer
automated heap layout[1]

3) Dereference the victim object for exploit primitives

vulnerable buffer victim object

[1] Heelan et al. Automatic Heap Layout Manipulation for Exploitation. USENIX Security 2018.

overflow

mov rax, [victim_obj]
call rax

func ptr

dereference

49

Roadmap

• Unsolved challenges in exploitation facilitation
• Our techniques -- FUZE
• Evaluation with real-world Linux kernel vulnerabilities
• Conclusion

50

Conclusion

• Primitive identification and security mitigation circumvention can greatly
influence exploitability
• Existing exploitation research fails to provide facilitation to tackle these two

challenges
• Fuzzing + symbolic execution has a great potential toward tackling these

challenges
• Research on exploit automation is just the beginning of the GAME! Still many

more challenges waiting for us to tackle…

51

Usage Scenarios

• Bug prioritization
• Focus limited resources to fix bugs with working exploits

• APT detection
• Use generated exploits to generate fingerprints for APT detection

• Exploit generation for Red Team
• Supply Red Team with a lot of new exploits

52

Q&A

• Acknowledgement:
• Yueqi Chen
• Jun Xu

• Xiaorui Gong
• Wei Zou

• Exploits and source code available at:
• https://github.com/ww9210/Linux_kernel_exploits

• Contact: wuwei@iie.ac.cn
53

JD.COM Introduction

54

Massive Scale

55

